gesunheitpfleges.org



Anti-cancer drug smuggled using a nanocarrier past protective blood-brain barrier into brain tumours

August 20, 2015

Mrs Andrea Orthmann, a PhD student who is working on the project under the supervision of Dr Reiner Zeisig and Dr Iduna Fichter in the Experimental Pharmacology group at the Max-Delbr??ck Centre for Molecular Medicine, Berlin (Germany), said: "The data show that the THLs are significantly better at reducing tumour growth than the free drug mitoxantrone, or mitoxantrone encapsulated in liposomes without the Angiopep ligand. The THLs reduced the tumour area by 73% in comparison to the untreated control group, and by 45% in comparison to free mitoxantrone. The second important point is the characterisation of side effects. We measured the body weight, blood parameters and the general conditions of the animals. We observed intolerances as a result of the treatment with the free drug (much body weight loss, gastrointestinal disorders, dehydration, pathologic skin and haematology toxicity). All of these side effects were prevented if THLs were used."

The reason why there were fewer side effects with the THL treatment was because the lipid membranes of the THLs protected the anti-cancer drug from affecting or being affected by the rest of the body. "This results in a clear reduction of side effects, which are usually the most serious concerns of anti-cancer drugs," said Mrs Orthmann.

She said that one of the exciting aspects of the research was its potential for use with other drugs and in other cancers and diseases. "Our Trojan Horse Liposomes represent a platform technology that enables the nanocarrier to be loaded easily with different drugs without any chemical modification. In addition, the Angiopep ligand could be replaced by other targeting molecules without too much additional effort. This means that the liposomes have the potential to be used in several other diseases, including neurodegenerative ones such as Alzheimer's, Parkinson's and Huntingdon's disease, as well as other tumours or metastases."

However, there is much work to be carried out first before this technology can enter the clinic. The researchers need to perform more laboratory research to improve the treatment of brain tumours and metastases and to investigate further the mechanism of drug delivery. "Our results demonstrate that the obstacle in the chemotherapeutic treatments of brain tumours and metastases in the brain can be overcome by our Trojan Horse Liposomes which are capable of improved transport through the blood-brain barrier," concluded Mrs Orthmann.

SOURCE Max-Delbr??ck Centre for Molecular Medicine