gesunheitpfleges.org



Scientists establish biomarker strategy to diagnose variety of cancer types

December 26, 2015

In the second step, the scientists wanted to find out whether the findings from the mouse model were also relevant to humans. They did this by examining tissue and serum samples from prostate cancer patients and a control group. Based on the list of specific proteins drawn up using the mouse model, the researchers identified 39 corresponding proteins in the humans that indicated prostate cancer. The information scientists used more than 20,000 models to calculate the four proteins that enabled the most reliable diagnosis to be made. We then used this biomarker pattern to examine a cohort of patients whose blood had never previously been analysed. We were able to predict with precision, stability and reproducibility whether they were suffering from prostate cancer, says Wilhelm Krek, professor of Cell Biology at ETH Zurich. Of course, this new biomarker signature needs now be to further validated in a larger clinical trial. The development of this highly promising project is being undertaken by the ETH Zurich spin-off company Proteomedix AG, which is currently developing a diagnosis kit.

In the beginning there was the gene

The biomarker strategy is based on the concept that the onset of cancer triggered by a mutation, such as the inactivation of a gene, is associated with a change in the protein pattern in the affected organ. Since approximately 20% of the surface proteins of certain tissues, including the prostate, can be separated off and detected in the serum, the detection of this kind of protein pattern, which is specific to the illness, represents a reliable potential method of diagnosis.

For many years, scientists have been using a wide variety of high-tech methods in an attempt to identify biomarkers that reliably indicate cancerous disease. Until now this task represented a major challenge, and sometimes measurements were made and analysed quite aimlessly. ?The protein patterns that were determined may have reflected the patients' eating habits, but were unable to provide any indication about whether or not a cancerous disease was present?, explains Krek. The highly promising research results that have now been produced offer an impressive demonstration that interdisciplinary collaboration between researchers, in this case cell biologists, proteomics experts, pathologists, clinical oncologists and information scientists, is often the only way to achieve success.

Source: University Hospital Zurich